ESSC

(Enterprise Systems Services Center) Project

Green Technology and Sustainability

Montana Digital Government Summit

Mike Boyer – DoA/ITSD Project Lead August 25, 2008

Topics

- ESSC design objectives/principles
- Challenges in power efficiency
- Ducted cabinetry
- "Free" cooling
- Cost/Benefit

ESSC Design Objectives/Principles

Business Objectives

- Security
 - Safeguard the IT assets of the State against physical threats and cyber threats
- Continuity of government
 - Assure continuous processing of critical systems
- Improved services
 - Manage availability to meet customer requirements
- Efficiency of services
 - Make high quality IT operations available to all State organizations

LEED "Green" characteristics

- "Leadership in Energy and Environmental Design"
- Low impact building (air, water, energy, pollution)
- Power best practices to reduce demand
- Using LEED standards wherever budget allows
- Not pursuing certification

ESSC Design Objectives/Principles

- Cooling efficiency
 - Heat recovery potential use of waste heat in adjacent building
 - Ambient air use
- Reduce power consumption
 - Reduce power draw of IT equipment
 - New equipment draws less and manages demand better
 - Expecting ~40% reduction
 - Reduce power required to cool the data center
 - Breakaway from conventional data center practices

Legacy Designs Cool air from raised floor

Mixing Cold Supply & Hot Return Air

Eliminate Mixing

- TOTAL Separation of cool air and hot return air
 - Sealed Cabinet Design or Sealed Rows
 - Treatment of the Cold Space as contiguous
 - Elimination of Zone Models and Tile Planning
- Circulated air passes only through IT hardware
 - Bypass airflow and recirculation is eliminated

Stop the hot & cold air mixing

Cooling efficiencies and operational costs in data centers are significantly improved

Emerging Energy Technologies

"Passive Ducted

Cabinets"

How do we reduce the energy needed to cool the hot discharge?

- Enclosed cabinet isolates cold and hot air
- Accelerated cooling thru rack
- •Fluid dynamics-based; no power required!
- Significant reduction in cooling cost
 - Mfg claim 60+% increase in efficiency

General Air Flow Pattern

Condougles in the line of the

The Challenge of Cooling

Power Usage Effectiveness (**PUE**)

PUE = <u>server power + cooling power</u>

server power

Typically ranges from 1.8 to 3.0 (surveys in the USA show an average PUE of 2.6)

- For every kW of server usage we are using between 0.8kW and 2kW of power to cool it
- New data centers with hot and cold aisles using raised floors would do well to get to a PUE of 1.8
 - At best, 44% of your power is for cooling!

Something different is needed!

Rotary Heat Exchanger

The rotor is constructed of an engineered lattice for optimal exchange which rotates between the hot exhaust air loop and the colder intake loop.

- Engineered Transfer Medium
- Microcrystalline Anti -Condensation
- Engineered Energy Transfer Controls
- Sealed 4 Quadrant Design
- Modeled efficiency

The rotor is warmed up in the stream of exhaust air and transfers the heat to the stream of incoming cold air.

Kyoto Cooling Wheel

- Integrated conventional CRAC cooling
- •Below ~74F degrees outside temps uses "free" cooling heat exchange wheel rather than CRACs
- Between ~74F and ~86F uses combination of CRAC & wheel
- •Over 86F run on CRAC only
- •12 foot wheel cools 300kW of servers (500kW of blades)

In case you're curious ...

Helena ESSC Floorplan

What can we expect in Helena?

- Using 2007 as a basis
- 8760 Hourly Measurements

- 7514 Hours less than or equal to 22C (~74F)
 - 86% NO conventional cooling required
- 883 Hours Greater Than 22C Less than 30C (~86F)
 - 10% Partial benefit mix of wheel and conventional
- 363 Hours Greater than 30C
 - 4% Conventional CRAC cooling only

Wheel Cost/Estimated Benefits

- Cost: \$500,000/wheel (installed plus site prep)
- Significant reduction in cooling power
 - TSS engineers conservative estimate: 1.7M kWh/year
 - Kyoto engineers more aggressive: ~ 4.0M kWh/year
- Payback of ~12.5-14 years (TSS conservative numbers)
 - Higher/safe PUE and \$0.068/kWh
- Payback of ~5 years (Kyoto aggressive numbers)
 - Lower PUE to give higher kWh savings
- •Miles City doesn't justify the investment due to very low electric rates and size of the facility
 - Using chiller with water-side free cooling.

This presentation and other ESSC materials available at: http://itsd.mt.gov/techmt/infrastructure.asp

